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Introduction

In many physical problems, one needs to describe
accurately the motion of bound leptons (e, µ, τ ,
etc.) in atomic orbits. Because this motion is rela-
tivistic, one must move from the Schrödinger equa-
tion and solve the Dirac equation in the field of the
finite size nuclei. Moreover, for high Z values of the
atomic nuclei, the motion of a muon, tau leptons,
etc. is relativistic, and the small component f(r) of
their wave functions is non-negligible.
As a result that component of the Dirac equation
needs also to be calculated.
Here we present, the Dirac system of radial equa-
tions for hydrogen-like atoms is shown and a pro-
posed numerical scheme based on neural networks
is presented. Before that the (time-independent)
Schrödinger equation since their solutions are sim-
ilar.
The results obtained can be used for:
1. Nuclear size corrections to the energy levels of
single-muon atoms

2. Accurate determination of the bound energy
spectra in purely leptonic atoms: Muonium, true
Muonium, etc.

The Radial equation

The Schrödinger Equation

Beginning with the radial equation for the
Schrödinger equation,(

−ℏ2

2µ

d2

dr2
+ V (r)

)
u(r) = Eu(r).

where µ denotes the respected reduced mass of
the system, given by

µ =
mamb

ma +mb

where ma and mb denote the mass of particles
a and b of the system respectively. The so-
lutions of the equation assuming that V (r) is
the Coulomb potential of the form −e2/r, where
e2 = 1.4399764 MeV fm, denotes the elemen-
tary charge, is of the form

u(r) =

√(
2

na0

)3 (n− l − 1)!

2n(n + l)!
e

−r
na0

(
2r

na0

)l

L2l+1n−l−1

(
2r

na0

)
where a0 is the Bohr radius of the leptonic system
and n, l are the quantum numbers.

The Dirac equation

As for the Dirac equation the respected radial
equations in this case is the system,

Radial equations system

dg

dr
+
1 + k

r
g =

1

ℏc
(E0 + E + V )f

df

dr
+
1− k

r
f =

1

ℏc
(E0 − E − V )g

where E0 = mc2 is the rest mass of the system.

This system of equations admits solutions of the form

Analytical Solutions

g(r) =
(2λ)3/2

Γ(2γ + 1)

[
(1 + ϵ)Γ(2γ + 1 + n′)

4N(N − k)n′!

]1/2
(2λr)γ−1e−λr

[(N − k)F (−n′, 2γ + 1, 2λr)− n′F (1− n′, 2γ + 1, 2λr)]

f (r) = − (2λ)3/2

Γ(2γ + 1)

[
(1− ϵ)Γ(2γ + 1 + n′)

4N(N − k)n′!

]1/2
(2λr)γ−1e−λr

[(N − k)F (−n′, 2γ + 1, 2λr) + n′F (1− n′, 2γ + 1, 2λr)]

where

ϵ =
E

E0
, λ =

E0

ℏc
, N =

α√
1− ϵ2

with α ≈ 1/137 denoting the fine structure constant. The energy E
is given by

E = mc2

[
1 +

α2(
n− |k| +

√
k2 − α2

)]−1/2

.

Proposed Numerical Solution of the Dirac

equation using N.N.

Let as assume first that u is a solution of the Schrödinger radial equa-
tion, if r1, . . . , rk > 0, then u must also satisfy,

k∑
i=1

[(
−ℏ2

2µ

d2

dr2
+ V (ri)

)
u(ri)− Eu(ri)

]2
= 0

Now let as assume that u is a numerical solution of the form

u(r) = re−krNf (r, u, v, w)

where

Nf (r, u, v, w) =

s∑
i=1

uif (vir + wi)

and f is the sigmoid function.
Then Nf is a 1-layer neural network with sigmoid activation functions.
It should be noted here that the above parameterization was chosen so
that u(0) = 0 and u(r) ∼ e−r.
Substituting u back to the radial equation, we obtain the error function,

Ef(r, u, v, w) =

k∑
i=1

[(
−ℏ2

2µ

d2

dr2
+ V (ri)

)
u(ri)− Eu(ri)

]2
.

The aim now is to minimize the above function for every r > 0, in the
scale we need, i.e. to find u, v and w so that the error function is close
or equal to zero. Utilizing the built-in Python methods, BFGS and
trust-constr we obtain the following results.

For the Dirac equation, in the same vein as before,
we first again formulate f and g as follows,

f (r) = re−kfrNf (r, uf , vf , wf)

g(r) = re−kgrNf (r, ug, vg, wg)

and the respected error function as,

Error function

Ef(r, ug, vg, wg, uf , vf , wf) =[
dg

dr
+
1 + k

r
g − 1

ℏc
(E0 + E + V )f

]2
+

[
df

dr
+
1− k

r
f − 1

ℏc
(E0 − E − V )g

]2
As for the energy it can be obtained as follows,

Energy value

E =
mc2

∫∞
0 [g2(r) + f 2(r)]dr +

∫∞
0 V (r)[g2(r)− f 2(r)]dr∫∞

0 [g2(r)− f 2(r)]dr
.
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