Mathematical formulation of the Dirac, Breit-Darwin equation for purely leptonic atoms

Theodora Papavasileiou

Department of Physics, University of Ioannina, Greece

Department of Informatics, University of Western Macedonia, Greece

MEDEX'2023, Prague September 4 - 8, 2023

1 Introduction

- 2 Exotic leptonic atoms (muonium, positronium, etc.)
- 3 Quantum mechanical description Non-relativistic Relativistic
- 4 Comparison of theoretical predictions with experimental data
- **5** Summary, conclusions and outlook

Introduction-Importance of Leptonic Atoms in BSM

- Conventional matter consist of leptons and quarks
- Some bosons are responsible for all the interactions
- Leptonic atoms are free of hadronic complex structure and effects \longrightarrow ideal to investigate the QED and beyond the Standard Model physics
- High precision spectroscopy of Muonium is crucial in testing QED and in determining the m_e/m_μ ratio
- Importance in measuring the muon mass m_{μ} and fine structure constant α

Muonium (Mu): Properties

μ+

- An exotic atom made up from an antimuon and an electron (μ⁺ e⁻) where the dominant interaction is electromagnetic
- It is formed when a positive muon captures an atomic electron after being slowed down in matter
- Due to the large muon's mass m_{μ} , it shares more similarities to hydrogen than positronium. It may be considered an exotic light isotope of hydrogen
- It is short-lived, with $\tau = 2, 2 \ \mu s$, however it undergoes chemical reactions
- It is studied through "muon spin spectroscopy" (μSR)

Muonium (Mu): Important Observables

- μSR is implemented in analysis of the structure of the compounds and chemical transformations
- Due to its leptonic nature, QED is able to predict its atomic energy levels with great precision
- Muonium is an ideal system for studying QED and for physics beyond the Standard Model (BSM)
- Conversion of Mu to \overline{Mu} is effective in identifying fundamental interactions related to the lepton flavor and lepton number violation

Positronium (Ps): General Properties

- A leptonic atom consisting of a positron and an electron $(e^+ e^-)$
- It is formed as a positron is losing energy in matter and is captured by an electron
- This system is unstable as the two particles annihilate each other to produce gamma-rays
- Positronium participates in chemical bonding such as positronium hydride (PsH) and cyanide
- Ps exhibits great differences in size, polarizability and binding energy from hydrogen due to the similarities between e^+ and e^-

Positronium (Ps): QM-description

• The singlet state, S=0, (antiparallel spins) is known as para-positronium, p-Ps, with $\tau = 0, 12 \text{ } ns \longrightarrow$ decays into two photons

• The triplet state, S=1, (parallel spins) is called ortho-positronium, o-Ps, with a slightly higher energy than p-Ps and $\tau = 142 \text{ } ns \longrightarrow$ decays into three photons

• Exhibits a hyperfine energy correction that is comparable to the respective fine structure one

Other Leptonic Atoms

Quantum Mechanical Description of Purely Leptonic Atoms

- Non-relativistic
 - Schrödinger equation
 - Inclusion of relativistic corrections (fine structure terms)
- Relativistic
 - Two-body Dirac equation (relative coordinate system)
 - Inclusion of the Breit-Darwin terms
 - Inclusion of Lamb shift (self-energy, vacuum polarization, etc.)

Study within QED

Analytical Solution of the Schrödinger Equation

Analytical Solutions for Leptonic Atoms

12

Relativistic Treatment

The Dirac Equation Formalism

$$(E - mc^{2} - V(r))g\mathcal{Y}_{jlm} = \frac{1}{r}\frac{\boldsymbol{\sigma}\cdot\boldsymbol{r}}{r}\left[-ir\frac{\partial}{\partial r} + i\boldsymbol{\sigma}\cdot\boldsymbol{L}\right]if\mathcal{Y}_{jl'm}$$
$$(E + mc^{2} - V(r))if\mathcal{Y}_{jl'm} = \frac{1}{r}\frac{\boldsymbol{\sigma}\cdot\boldsymbol{r}}{r}\left[-ir\frac{\partial}{\partial r} + i\boldsymbol{\sigma}\cdot\boldsymbol{L}\right]g\mathcal{Y}_{jlm}$$

Eshetu Diriba Kena and Gashaw Bekele Adera (2021) J. Phys. Commun. 5 105018

The Dirac Equation Formalism

$$\hat{\boldsymbol{H}} = \hat{\boldsymbol{H}}_i + \hat{\boldsymbol{H}}_j + \hat{\boldsymbol{H}}_{int}$$

The Breit-Darwin Equation

Mu Experiments

17

Ps Experiments

Experimental vs Theoretical Predictions

Theoretical predictions for Ps			Mu	Theory (MHz)		Experiment (MH	z)
6	Quantity Prediction		- 1S-2S	2455528935,8(1,4)		2455528941,0(9,8	3)
$ \frac{\Delta\nu(1S-2S)}{\Delta\nu_{HFS}(1S)} \\ \frac{\Delta\nu(2^3S_1-2^3P_0)}{\Delta\nu(2^3S_1-2^3P_1)} \\ \frac{\Delta\nu(2^3S_1-2^3P_2)}{\Delta\nu(2^3S_1-2^3P_2)} \\ \frac{\Delta\nu(2^3S_1-2^3P_2)}{\Delta\nu(2^3S_1-2^3P_1)} \\ \frac{\Delta\nu(2^3S_1-2^3P_1)}{\Delta\nu(2^3S_1-2^3P_1)} \\ \frac{\Delta\nu(2^3S_1-2^3P_1)}{\Delta\nu(2^3S_1-2^3P_1)} \\ \frac{\Delta\nu(2^3S_1-2^3P_1)}{\Delta\nu(2^3S_1-2^3P_1)} \\ \frac{\Delta\nu(2^3S_1-2^3P_1)}{\Delta\nu(2^3S_1-2^3P_1)} \\ \frac{\Delta\nu(2^3S_1-2^3P_1)}{\Delta\nu(2^3S_1-2^3P_1)} \\ \frac{\Delta\nu(2^3S_1-2^3P_1)}{\Delta\nu(2^3S_1-2^3P_1)} $		1 233 607 222.2(6) MH 203 391.7(5) MHz 18 498.25(9) MHz 13 012.41(9) MHz 8 625.70(9) MHz 11 185.37(9) MHz	Lamb shift	1047,284(2)		1042(22)	
			Ground state hfs	4463,30289(27)		4463,302765(53))
			Ps	Theory (MHz)		Experiment (MH	Z)
			1S-2S	1233607222,13(58)		1233607216,4(3,2	2)
	(p-Ps) (o-Ps)	7.040 07(2) μs^{-1}	Ground state hfs	203	391,91(22)	203394,2(2,1)	·
Fru	giuele, C., Perez-Río	s, J. and Peset, C. (2019) Physical Science (2019) Phy	MuSEUM at J-PARC the h		the hfs	s structure	
	Important upcoming Mu experiments	Mu-MASS at PSI		1S-2S transition frequency			
			Muon g-2 at FNAL		anomalous magnetic moment		10

Conclusions

- Purely leptonic atoms offer promising research prospects in testing QED and BSM theories
- Mu and Ps are leading in the research interest due to their unique characteristics
- Accurate theoretical predictions require the solution of the Dirac equation, taking into account the Breit-Darwin terms and the Lamb shift
- Promising new experiments aim at shedding light on theoretical contradictions, especially concerning Mu
- Our goal is to make improved theoretical predictions for the leptonic atom bound states using advanced numerical codes

Collaborators: OPRA-project Research Team

- Theocharis Kosmas, Univ. of Ioannina, Greece: S.C. of the Project OPRA-UoI-UoJ
- Jouni Suhonen, Univ. of Jyvaskyla, Finland: Leader of testing QED and BSM theories
- Odyssefs Kosmas (Principal Investigator), Conlgital, Manchester, Coventry, UK: Leading the derivation and assessment of the new algorithms
- Dimitrios Papoulias (PostDoc), Univ. of Athens, Greece: Testing QED and BSM theories with the new algorithms
- Athanasios Gkrepis (PhD St), derivation and assessment of the new algorithms (in Python language)
- Theodora Papavasileiou (PhD St), testing QED theory with the new algorithms
- Leandros Perivolaropoulos (Deputy Scientific Coordinator), Univ. of Ioannina, Greece

Thank you for your attention!

I wish to acknowledge financial support from OPRA (Open Problems Research Association), Tel Aviv, Israel to attend MEDEX23 and for the realization of the research I presented in my talk

Analytical solution to the Dirac equation

$$f = \frac{1}{2} N e^{-\frac{\rho}{2}} \rho^{s-1} [M(s-\gamma, 2s+1, \rho) - L_{-}M(s-\gamma+1, 2s+1, \rho) - \Lambda_{+} \rho^{-2s} M(-s-\gamma, -2s+1, \rho) - \Lambda_{-}L_{+} \rho^{-2s} M(-s-\gamma+1, -2s+1, \rho)]$$

$$g = \frac{1}{2} N \zeta e^{-\frac{\rho}{2}} \rho^{s-1} [M(s-\gamma, 2s+1, \rho) + L_{-}M(s-\gamma+1, 2s+1, \rho) - \Lambda_{+} \rho^{-2s} M(-s-\gamma, -2s+1, \rho) + \Lambda_{-}L_{+} \rho^{-2s} M(-s-\gamma+1, -2s+1, \rho)]$$

Where

$$\Lambda_{\pm} = \frac{\Gamma(2s+1)}{\Gamma(-2s+1)} \frac{\Gamma\left(\frac{1}{2} - s - \beta_{\pm}\right)}{\Gamma\left(\frac{1}{2} + s - \beta_{\pm}\right)}; L_{\pm} = \frac{s \pm \gamma}{\kappa - \gamma/E'}; E' = \frac{E}{m}$$

And

$$\gamma = \frac{Z\alpha E'}{\sqrt{1 - E'^2}}; \quad \zeta = \sqrt{\frac{m - E}{m + E}}; \quad s = \sqrt{\kappa^2 - (Z\alpha)^2}$$

Probability density

Eshetu Diriba Kena and Gashaw Bekele Adera (2021) J. Phys. Commun. 5 105018