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Introduction-Importance of Leptonic Atoms in BSM

• Conventional matter consist of leptons and quarks

• Some bosons are responsible for all the interactions

• Leptonic atoms are free of hadronic complex structure and effects −→ ideal to
investigate the QED and beyond the Standard Model physics

• High precision spectroscopy of Muonium is crucial in testing QED and
in determining the me/mµ ratio

• Importance in measuring the muon mass mµ and fine structure
constant α
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Muonium (Mu): Properties

• An exotic atom made up from an antimuon and an electron (µ+ e−) where the
dominant interaction is electromagnetic

• It is formed when a positive muon captures an atomic electron after being
slowed down in matter

• Due to the large muon’s mass mµ, it shares more similarities to hydrogen than
positronium. It may be considered an exotic light isotope of hydrogen

• It is short-lived, with τ = 2,2 µs, however it
undergoes chemical reactions

• It is studied through “muon spin spectroscopy” (µSR)



5

Muonium (Mu): Important Observables

• µSR is implemented in analysis of the structure of the compounds and
chemical transformations

• Due to its leptonic nature, QED is able to predict its atomic energy levels with
great precision

• Muonium is an ideal system for studying QED and for physics beyond
the Standard Model (BSM)

• Conversion of Mu to Mu is effective in identifying
fundamental interactions related to the lepton flavor
and lepton number violation
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Positronium (Ps): General Properties

• A leptonic atom consisting of a positron and an electron (e+ e−)

• It is formed as a positron is losing energy in matter and is captured by an
electron

• This system is unstable as the two particles annihilate each other to produce
gamma-rays

• Positronium participates in chemical bonding such as
positronium hydride (PsH) and cyanide

• Ps exhibits great differences in size, polarizability and
binding energy from hydrogen due to the similarities
between e+ and e−
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Positronium (Ps): QM-description

• The singlet state, S=0, (antiparallel spins) is known as para-positronium, p-Ps,
with τ = 0,12 ns −→ decays into two photons

• The triplet state, S=1, (parallel spins) is called ortho-positronium, o-Ps, with a
slightly higher energy than p-Ps and τ = 142 ns −→ decays into three
photons

• Exhibits a hyperfine energy correction that is
comparable to the respective fine structure one
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Other Leptonic Atoms
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Quantum Mechanical Description of Purely Leptonic Atoms

• Non-relativistic

• Schrödinger equation

• Inclusion of relativistic corrections (fine structure terms)

• Relativistic

• Two-body Dirac equation (relative coordinate system)

• Inclusion of the Breit-Darwin terms

• Inclusion of Lamb shift (self-energy, vacuum polarization, etc.)
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Study within QED
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Analytical Solution of the Schrödinger Equation

Rnl(r) =

√(
r̄
nr

)3 (n − l − 1)!

2n(n + l)!

(
r̄
n

)l

e−r̄/2nL2l+1
n−l−1

(
r̄
n

)
,

r̄ = 2Zr/α∗
0

x
d2

dx2 L(a)
n + (a + 1− x

d
dx

L(a)
n + nL(a)

n = 0, a > −1

L(a)
0 (x) = 1, L(a)

1 (x) = −x + a + 1,

L(a)
2 (x) =

x2

2
− (a + 2)x +

(a + 1)(a + 2)

2



12

Analytical Solutions for Leptonic Atoms
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Relativistic Treatment
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The Dirac Equation Formalism
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The Dirac Equation Formalism
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The Breit-Darwin EquationĤHH = ĤHH i +ĤHH j +ĤHH int
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Mu Experiments

Ground state hfs structure

1s-2s energy interval

Mu-M̄u conversion

Test of CPT and Lorentz
invariance

• Accuracy in values such as mµ, µµ, αµ, α

• Search for new unknown forces in nature

• Restrictions on parameters of speculative
theories



18

Ps Experiments

Test of QED

hfs on the ground state

Maximal recoil effects

Deexcitation of Rydberg Ps
states

• High accuracy in measuring the Rydberg
constant

• Test fundamental symmetries

• Restrictions on the types of new forces,
particles or fields invented to overcome the
SM weaknesses
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Experimental vs Theoretical Predictions
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Conclusions

• Purely leptonic atoms offer promising research prospects in testing QED and
BSM theories

• Mu and Ps are leading in the research interest due to their unique
characteristics

• Accurate theoretical predictions require the solution of the Dirac equation,
taking into account the Breit-Darwin terms and the Lamb shift

• Promising new experiments aim at shedding light on theoretical
contradictions, especially concerning Mu

• Our goal is to make improved theoretical predictions for the leptonic atom
bound states using advanced numerical codes
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Analytical solution to the Dirac equation
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Probability density
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