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The basic tools for the quantum mechanical description in the microcosm are the
wavefunctions. They contain all the information of the underlying quantum system.
They are solutions of differential equations ordinary (ODEs) or partial (PDEs)
(Schrödinger, Klein Gordon, Dirac, Breit-Darwin. . .).

Such equations in their majority cannot be solved analytically. So the development of
advanced (numerical) methods for solving them is a necessity.
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These methods can generally be categorized as

deterministic

stochastic
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The 3-D time-independent Schrödinger equation, (for a symmetric potential V (|x |)) is[
−ℏ2

2µ
∇2 + V (|x |)

]
Ψ(x) = EΨ(x).

In spherical coordinates (r , θ, ϕ), this equation is equivalently written as,

− ℏ2

2µ

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin θ

∂2

∂ϕ2

]
ψ + V (r)ψ = Eψ.
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Spherical equation

Separation of spherical coordinates

As is well known, assuming that:

ψ(r , θ, ϕ) = R(r)Y (θ, ϕ)

(i.e. using separation of radial from the angular part) we obtain,

[
1

R(r)

∂

∂r

(
r2
∂

∂r

)
R(r)− 2µr2

ℏ2
[V (r)− E ]

]
+

[
1

Y (θ, ϕ) sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Y (θ, ϕ) +

1

Y (θ, ϕ) sin2 θ

∂2

∂ϕ2
Y (θ, ϕ)

]
= 0.

In the latter equation we have the sum of two terms, with the first term depending
explicitly on variable r and the second term on the angular variables.
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Spherical equation

This can only happen if both of these terms are constants.For quantum mechanical
reasons, we choose these constants to be proportional to l(l + 1), where
l = 0, . . . , n − 1, i.e.

Radial equation

1

R(r)

∂

∂r

(
r2
∂

∂r

)
R(r)− 2µr2

ℏ2
[V (r)− E ] = l(l + 1)

and

Angular equation

1

Y (θ, ϕ) sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Y (θ, ϕ) +

1

Y (θ, ϕ) sin2 θ

∂2

∂ϕ2
Y (θ, ϕ) = −l(l + 1)

which are called the radial and angular equations respectively.
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Spherical equation

Using again the method of separation of variables on the angular equation
Y (θ, ϕ) = f (θ)g(ϕ),

1

Y (θ, ϕ) sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Y (θ, ϕ) +

1

Y (θ, ϕ) sin2 θ

∂2

∂ϕ2
Y (θ, ϕ) = −l(l + 1)

we obtain the following equation

sin θ

f (θ)

(
sin θ

∂

∂θ

)
f (θ) + l(l + 1) sin2 θ +

1

g(ϕ)

∂2

∂ϕ2
g(ϕ) = 0.

Again now, using the same logical reasoning as before we obtain the following
equations.
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Spherical equation

sin θ

f (θ)

(
sin θ

∂

∂θ

)
f (θ) + l(l + 1) sin2 θ = m2

and

1

g(ϕ)

∂2

∂ϕ2
g(ϕ) = −m2.

The second equation is a linear second order differential equations which admits
solutions of the form,

g(ϕ) = e imϕ.
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Spherical equation

As for the first equation, it admits solutions of the form

f (θ) = Pl ,m(cos θ)

where Pl ,m are the associated Legendre polynomials which can be generated using the
following formula,

Pl ,m(x) = (−1)m
√

(1− x2)m
dm

dxm
Pl(x) where Pl(x) =

(−1)l

2l l!

d l

dx l
(1− x2)l .
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Spherical equation

So the solutions of the angular equation are,

Yl ,m(θ, ϕ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pl ,m(cosθ)e

imϕ

which are called spherical harmonics. The coefficient in front is comes from the
orthonormalization condition, i.e.,∫ π

0

∫ 2π

0
Y ∗
l ,mYl ′,m′ = δl ,l ′δm,m′ ,

where δ denotes the Kronecker delta symbol (δi ,j = 1 if i = j , else 0).
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Radial Part of Schrödinger equation (Analytic Solution)

The radial equation,

1

R(r)

∂

∂r

(
r2
∂

∂r

)
R(r)− 2mr2

ℏ2
[V (r)− E ] = l(l + 1)

using the transformation R(r) = u(r)/r , provides the known as ”reduced radial
equation”,

− ℏ2

2µ

∂2

∂r2
u(r) + V (r)u(r)− Eu(r)− l(l + 1)

r2
u = 0.
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Radial Part of Schrödinger equation (Analytic Solution)

Assuming that, V has the simple Coulomb potential form,

V (r) = −e2

r

the normalized analytic solution of the radial part of the wavefunction is given by,

Rn,l(r) =

√(
2

na0

)3 (n − l − 1)!

2n[(n + l)!]3
e−r/na0

(
2r

na0

)l

L2l+1
n−l−1

(
2r

na0

)
where Li

j are the associated Laguerre polynomials Li
j , which satisfy the following

equation,

xLi ′′
j (x) + (1− x − i)Li ′

j (x) + jLi
j(x) = 0.
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Beginning with the two-body purely leptonic system (e.g. muonium, positronium), we
can calculate its Bohr radius a0 using the formula,

a0 =
ℏ
µa

where µ is the reduced mass of the two body system. The energy eigenvalue is given
by the formula

En = − ℏ2

2µa20n
2
.
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Numerical method

Solution of the Schrödinger Differential equation using NNT

Going back to the reduced radial equation,

− ℏ2

2µ

d2

dr2
u(r) + V (r)u − Eu(r) = 0,

if u is a solution of the latter ODE, by considering a grid r1, r2, . . . , rs , it also holds,

s∑
i=1

[
− ℏ2

2µ

∂2

∂r2
u(ri ) + V (ri )u(ri )− Eu(ri )

]2
= 0

Then we define as

Ferr (u) =
s∑

i=1

[
− ℏ2

2µ

∂2

∂r2
u(ri ) + V (ri )u(ri )− Eu(ri )

]2
the so called error function.
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Numerical method

Defining,

u = re−krN(r , u, v ,w)

where f is the logistics function,

Logistics function

f (x) =
1

1 + e−x

and N is the function, given by

N(r , u, v ,w) =
m∑
i=1

vi f (wi r + ui )

we have created a 2-layers N.N. with activation function the logistics function.
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Analytic Description

Creation of the Neural Network

Our approach to solve the reduced radial equation consists in parametrizing u(r)
and then minimizing the left-hand side of equation,

s∑
i=1

[
− ℏ2

2µ

d2

dr2
u(ri ) + V (ri )u(ri )− Eu(ri )

]2
= 0

As to avoid the trivial solution u(r) = 0 everywhere, we can divide by the
normalization

∫
u2(r)dr .

We use the parametrization

u(r) = re−krN(r , u,w , v), k > 0,

where N(r, u, w, v) is a feed-forward artificial neural network with
two hidden layers
one input unit (r)
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Analytic Description

The Neural Network Technique

The biases are denoted by u = (u1, u2, . . . , um), where m denotes the number of
hidden units.

The weights to the hidden layers are denoted by w = (w1,w2, ...,wm) and

the weights to the output by v = (v1, v2, ..., vm).

The hidden layer units have sigmoid activations of the form f (x) = (1 + e−x)−1.

Finally we have

N(r , u,w , v) =
m∑
i=1

vi f (wi r + ui )
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Analytic Description

To obtain the precise expression for the reduced radial wavefunction u(r) we follow the
steps:

we insert the form of N(r) in equation of u(r).

Then, we train the network so as to minimize the error-function down to a
quantity close enough to zero for all practical purposes.

This is achieved by adjusting the biases (ui ) and weights (wi ).

The energy of the corresponding atomic orbit is determined from the minimum
energy-eigenfunction

The training in our method was performed using the BFGS and trust-constr algorithms
as provided from the Python submodule SciPy.optimize
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Results for 2-leptons systems

Comparison of analytical and numerical solution

For n = 1, 2, 3 and l = 0, . . . , n − 1 the results are the following

(Number of nodes: 10, Size of grid: 100) [axis: r/a0, R ∗ a3/20 ]
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Results for 2-leptons systems

Comparison of analytical and numerical solution

Preliminary Results
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Results for 2-leptons systems

Dirac equation

Proceeding to the Dirac radial coupled equations system,

d

dr
f (r) +

k

r
f (r) =

1

ℏc
(µc2 − E + V (r))g(r)

d

dr
g(r)− k

r
g(r) =

1

ℏc
(µc2 + E − V (r))f (r)

the respected error function is,

FD
err (f , g) =

∑[
df (ri )
dr + k

ri
f (ri )− µc2−E+V (ri )

ℏc g(ri )
]2

+
∑[

dg(ri )
dr − k

ri
g(ri )− µc2+E−V (ri )

ℏc f (ri )
]2

∫∞
0

[g2(r) + f 2(r)]dr
.
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We have presented an numerical method for solving the Schrödinger and the
Dirac equation, which can include relativistic terms (Breit, Darwin, etc.)

We assessed the effectiveness of the method by comparing the numerical solution
with the analytic ones whenever possible (non-relativistic case, Schr. eq.)

For the numerical solution we adopted an N.N. technique based on the
minimization of the error function.

We conclude that for small quantum numbers, the agreement is excellent even in
the cases of using a small number of nodes, but for bigger ones a greater partition
is required.

The applied method is for the accurate description of exotic purely leptonic atoms
for which extremely sensitive experiments all over the world provide relevant
spectroscopi data.
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Thank You!

Ioannina Kastoria
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