
An advanced algorithm to solve the Dirac-Coulomb equation

Athanasios Gkrepis,1, 2, a) Odysseas Kosmas,3 and Theocharis Kosmas1

1Department of Physics, University of Ioannina, Ioannina, Greece
2Department of Informatics, University of Western Macedonia, Kastoria, Greece

3Conigital LTD, Birmingham-Coventry, UK
a)Corresponding author: a.gkrepis@uowm.gr

Abstract. The Quantum Mechanical partial differential equations of Schrödinger, Klein-Gordon, Dirac, etc., are fundamental tools
for describing the motion of particles as well as phenomena in the microcosm. However, usually they don’t have analytical solutions
and the use of advanced numerical methods are demanded for their solutions. In this work we derive an effective algorithm for
solving the Dirac-Coulomb equation within the physics informed neural networks techniques. For a modern application, we test
this code (in Python language) on the reproducibility of the Muonium, (µ+e−), antimuon-electron two-leptons system, which is
of current importance in atomic, nuclear and particle physics.

INTRODUCTION

The structure of the Hydrogen atom as well as that of purely leptonic atoms, like the Muonium (µ+e−) we are
interested in the present work, is well described within the framework of the quantum electrodynamics (QED). In
the context of this theory, protons, electrons and muons are spin-1/2 Dirac particles (fermions) and their motion and
dynamics could be described by the well known Dirac equation [1, 2]. This equation encompasses special relativity
and quantum mechanical aspects. In the case of the two-body system Hydrogen atom, (p+e−), one way of the
description is to consider the electron e− moving inside the Coulomb field V (r) created by the positively charged
proton (p+). In a similar way, for the Muonium we may assume that the µ+ is producing a Coulomb field V (r) inside
of which the e− is moving. Subsequently, the mathematical problem one is facing is to solve a system of two coupled
ordinary differential Dirac equations of first order in the relative coordinate system of the two-particles.

Then, in both the above examples, the real problem one has to deal with is the solution of the radial Dirac equations
for a single-particle (the e−) moving in a central potential V (r) produced by the positively charged lepton µ+. This
description is a good approximation provided that, if m1 and m2 are the masses of the proton (or anti-muon), and
electron, respectively, then m1 ≫ m2. Under such an assumption the mass parameter entering the Dirac equation is
the me mass of the electron.

In this paper, we derive a numerical scheme for solving the Dirac-Coulomb radial equations by utilizing a physics
informed neural network (PINN) [3]. The rest of the paper, is organized as follows. At first, we present the formalism
of solving analytically the differential system of the radial coupled one-body Dirac equations. Next, we present
the new numerical scheme and describe the steps of the physics informed neural networks employed as well as
the application of the method in the Muonium purely leptonic atom. This method, is an extension of that derived
previously [4] for solving the non-relativistic Schrödinger equation. Finally, we summarize our findings and discuss
future perspectives of this project.

FORMULATION OF THE DIRAC-COULOMB EQUATION ANALYTIC SOLUTIONS

In atomic and molecular physics, for most calculations a common starting point is the "independent particle central
field approximation". In the case of the muonic atoms and purely leptonic atom Mu (µ+e−), this approximation
assumes that the electron moves independently within a 4-vector potential field Aµ of the form

A0(r) =−eφ(r) , r = |r| , A = 0 (1)

(equivalently Ai = 0, i = 1,2,3). Clearly φ(r) remains unchanged by any rotation about r = 0, but transforms as the
component A0(x) of a 4-vector under Lorentz and Poincaré transformation such as boosts or translations. However,
solutions in central potentials like that of Eq. (1) have a simple form which is convenient for further calculation. Under
these assumptions on the 4-vector potential, the Dirac Hamiltonian H becomes

H = cα ·p+β ·E0 +V (r) I. (2)



For any stationary (time-independent) solution with energy E the Dirac Hamiltonian satisfies the equation HΨ = EΨ.
For obtaining analytical solutions of the Dirac equation for the electron in central field, one can follow the procedure

outlined by Bethe and Salpeter [1]. The Dirac equation for particle in the field V (r) is the 4×4 system of equations,

HΨ(r) = [cα ·p+β ·E0 +V (r) I]Ψ(r) = EΨ(r) (3)

where E0 = mc2 is the rest mass of the electron, p = −ih̄∇ = −ih̄(∂x,∂y,∂z) denotes the momentum operator and
α = (α1,α2,α3), β denote the Dirac matrices representations

α=

[
0 σ

σ 0

]
, β =

[
I 0
0 −I

]
(4)

I the 2×2 identity matrix and σ the Pauli matrices. By setting

Ψ(r)≡
(

ψA
ψB

)
=

[
f (r)Y (θ ,φ)

ig(r)Ỹ (θ ,φ)

]
(5)

where Y and Ỹ denote the spin spherical harmonics, Eq. (3) can equivalently be written in matrix form as,[
E0 −E +V cσ ·p

cσ ·p −E0 −E +V

](
ψA
ψB

)
=

(
0
0

)
. (6)

Using the identity

σ ·p =
σ · r
r2

(
−ih̄r

∂

∂ r
+ iσ ·L

)
(7)

after some elaboration, we obtain the equations

σ ·p f (r)Y (θ ,φ) = ih̄
d
dr

f (r)Ỹ (θ ,φ)+ i
k+1

r
h̄ f (r)Ỹ (θ ,φ)

σ ·pg(r)Ỹ (θ ,φ) = ih̄
d
dr

g(r)Y (θ ,φ)− i
k−1

r
h̄g(r)Y (θ ,φ).

(8)

Then, the known coupled Dirac equation providing the radial part of the wavefunction Ψ(r) are

d f
dr

+
1+κ

r
f =

1
h̄c

(E0 +E −V )g ,

dg
dr

+
1−κ

r
g =

1
h̄c

(E0 −E +V ) f ,
(9)

where f and g are the large (upper) and small (bottom) components respectively (some authors denote these functions
the opposite way) and κ is the total spin quantum number. The system of Eqs. (9), can be simplified by using the
transformation

f = F/r ,
g = G/r ,

(10)

where F(r) and G(r) are the corresponding reduced radial wave functions, given by

dF
dr

+
κ

r
F =

1
h̄c

(E0 +E −V )G ,

dG
dr

− κ

r
G =

1
h̄c

(E0 −E +V )F .

(11)

The latter differential system will be numerically solved in the next section. The system of Eqs. (9) admits solutions
of the form [1, 2],

f =
(2λ )3/2

Γ(2γ +1)

[
(1+ ε)Γ(2γ +1+n′)

4N(N −κ)n′!

]1/2

(2λ r)γ−1e−λ r [(N −κ)1F1(−n′,2γ +1,2λ r)−n′ 1F1(1−n′,2γ +1,2λ r)
]

g =
−(2λ )3/2

Γ(2γ +1)

[
(1− ε)Γ(2γ +1+n′)

4N(N −κ)n′!

]1/2

(2λ r)γ−1e−λ r [(N −κ)1F1(−n′,2γ +1,2λ r)+n′ 1F1(1−n′,2γ +1,2λ r)
]

(12)



where

ε =
E
E0

, N =
α√

1− ε2
, γ

2 = κ
2 −α

2 , λ =
E0

h̄c

√
1− ε2 , n′ = N − γ

and 1F1(A,C,z) denotes the confluent hypergeometric function of first kind.
Regarding the coefficients in front of f and g, they are chosen so as to satisfy the normalization condition,∫

∞

0

[
f 2(r)+g2(r)

]
r2 dr =

∫
∞

0

[
F2(r)+G2(r)

]
dr = 1. (13)

The energy eigenvalues which are determined simultaneously with the corresponding wave functions, are given by

En,κ = mc2

1+
α2(

n−|κ|+
√

κ2 −α2
)2


−1/2

. (14)

It is worth noting that compared to the Schrödinger radial equation’s eigenvalues, the quantum number κ joins n
(principal quantum number) in the calculation of E.

NUMERICAL SOLUTION UTILIZING PHYSICS INFORMED NEURAL NETWORK

Beginning with the radial Eqs. (11), if F and G are a pair of solutions and ri > 0 is a finite sequence of positive
numbers (i.e. a grid on the positive r-axis) then,

s

∑
i=0

{[
dG(ri)

dr
+

κ

ri
G(ri)−

1
h̄c

(E0 +E −V (ri))F(ri)

]2

+

[
dF(ri)

dr
− κ

ri
F(ri)−

1
h̄c

(E0 −E +V (ri))G(ri)

]2
}

= 0

(15)
must also hold true.

Let us assume now that F and G are trial numerical solutions of Eqs. (9) given by,

F(r) = c f re−β rN(r, u⃗ f , v⃗ f , w⃗ f )

G(r) = cg re−β rN(r, u⃗g, v⃗g, w⃗g)
(16)

where β > 0 is an optimization constant related to λ = m/h̄c
√

1− (E/mc2)2, (c f ,cg) ∈ R2 and

N(r, u⃗, v⃗, w⃗) =
d

∑
i=1

ui a f (vir+wi) (17)

is a one layer neural network with a f denoting an activation function (e.g. sigmoid, tanh, ReLU).
Inserting these functions into the left hand side of Eq. (15), we define the error function, E f for the grid ri defined

above as,

E f (⃗u, v⃗, w⃗) =
s

∑
i=0

{[
dF(ri)

dr
+

κ

ri
F(ri)−

1
h̄c

(E0 +E +V )G(ri)

]2

+

[
dG(ri)

dr
− κ

ri
G(ri)−

1
h̄c

(E0 −E −V )F(ri)

]2
}

(18)
where u⃗ = (u⃗ f , u⃗g), v⃗ = (v⃗ f , v⃗g), w⃗ = (w⃗ f , w⃗g) ∈ R2d . One could divide the error function by

∫
∞

0 (F2 +G2)dr for
avoiding the trivial zero solutions.

Now the task it to minimize the error function. For κ = −1, it has been solved using deterministic and stochastic
methods for different systems [5, 6, 7].

As for the corresponding energy E, it can be calculated using the following formula,

E =

∫
∞

0 V (r)[F2(r)−G2(r)]dr+E0
∫

∞

0
(
F2 +G2

)
dr∫

∞

0 [F2(r)−G2(r)] dr
. (19)
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FIGURE 1. We see that, the analytical (straight line) and numerical (dashed line) solutions of F (left) and G (right) coincide.

In this work we utilized the L-BFGS-B method provided by the python scipy.optimize module [8], with 8 hidden units
of tanh form, with c f = 1 and obtained the results presented in the above figure for the ground state (n = 1, l = 0).

Furthermore, from the comparison the low-lying energy eigenvalues, corresponding to the wave functions obtained
through the analytic and numerical methods for the Muonium exotic atom, we conclude that the performance of our
algorithm is excellent.

SUMMARY, CONCLUSIONS AND OUTLOOK

We presented a numerical scheme relying on a Physics Informed Neural Network for solving the Dirac-Coulomb
radial equations for a single electron system for which analytical solutions exist. Then, we applied this algorithm for
obtaining the low-lying bound spectrum of the Muonium exotic atom.

Our next step is to solve numerically, the Dirac-Coulomb-Breit equation [9] which provides a fully relativistic
description of two-body systems by incorporating, among other corrections, the two-particle Breit term.
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